Blockade of endogenous angiotensin-(1-7) in the hypothalamic paraventricular nucleus reduces renal sympathetic tone.

نویسندگان

  • Ana Quênia Gomes da Silva
  • Robson Augusto Sousa dos Santos
  • Marco Antônio Peliky Fontes
چکیده

In this study, we tested the hypothesis that angiotensin-(1-7) [Ang-(1-7)] acting in the neurons of paraventricular hypothalamic nucleus (PVN) contributes to the maintenance of sympathetic activity and blood pressure. For this purpose, the effects of microinjection of the A-779, the receptor Mas antagonist, into the PVN on mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were evaluated. In rats anesthetized with urethane (1.2 to 1.4 g/kg IP), bilateral microinjections of A-779 (0.1 nmol) into the PVN resulted in a selective and significant decrease in RSNA (-26+/-6% versus -2+/-3% vehicle; saline 0.9%). The magnitude of the decrease in RSNA produced by A-779 was comparable to that observed after microinjection of muscimol (1 nmol; -26+/-4%), a powerful neuronal inhibitor. A higher dose of A-779 (1 nmol) caused a reduction in RSNA (-21+/-4%) that was comparable in magnitude to the reduction observed with the lower dose. When compared with vehicle solution, no significant changes in MAP or HR were observed with both doses of A-779 tested. A decrease in RSNA was also observed after microinjections into the PVN of the angiotensin II type 2 (AT2) receptor antagonist PD123319 (1 nmol; -18+/-4%). Microinjections of the AT1 antagonist losartan but not CV 11974 reduced MAP without changing RSNA. These results suggest that Ang-(1-7) Mas receptors and AT2 receptors in the PVN neurons play a role in mediating the tonic maintenance of RSNA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر آنژیوتانسین II در هسته پاراونتریکولار در تشدیدآسیب ایسکمی- پرفیوژن مجدد کلیه

Background: The renal sympathetic nerve activity (RSNA) is enhanced in renal failure. Paraventricular nucleus in hypothalamus is an important central site to regulate sympathetic activity. There are angiotensin II (Ang) II receptors in this nucleus. The aim of this study was to evaluate the effects of angiotensin II in hypothalamic paraventricular nucleus (PVN) on renal ischemia-reperfusion inj...

متن کامل

Effect of Losartan injection into paraventricular nucleus on the deleterious effects of angiotensin II in renal ischemia-reperfusion injury

Introduction: The aim of this study was to investigate the effect of angiotensin II (Ang II) and losartan injections into paraventricular nucleus (PVN) on renal ischemia-reperfusion injury. Methods: After right nephrectomy in male rats, a cannula was inserted into the right PVN. One week later, renal ischemia-reperfusion (IR) injury was induced by clamping the left renal artery for 45 min, a...

متن کامل

Effect of nitric oxide within the paraventricular nucleus on renal sympathetic nerve discharge: role of GABA.

Both nitric oxide (NO) and GABA are known to provide inhibitory inputs to the paraventricular nucleus (PVN) of the hypothalamus and are involved in the control of sympathetic outflow. The purpose of the present study was to examine the interaction of NO and GABA in the regulation of renal sympathetic nerve activity in rats. The responses of renal nerve activity, blood pressure, and heart rate t...

متن کامل

Cardiovascular responses produced by resistin injected into paraventricular nucleus mediated by the glutamatergic and CRFergic transmissions within rostral ventrolateral medulla

Objective(s): Resistin, as a 12.5 kDa cysteine-rich polypeptide, is expressed in hypothalamus and regulates sympathetic nerve activity. It is associated with obesity, metabolic syndrome and cardiovascular diseases. In this study, we investigated the neural pathway of cardiovascular responses induced by injection of resistin into paraventricular nucleus (PVN) with rostr...

متن کامل

Activation of central PPAR-γ attenuates angiotensin II-induced hypertension.

Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 46 2  شماره 

صفحات  -

تاریخ انتشار 2005